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Self-oscillatory processes described by nonlinear partial differential equa-
tions have been considered in {1 to T7].

Below, a periodic solution to the diffusion equation with & certain non-
linear boundary condition 1s given.

A set of papers [8 to 11] has been devoted
to self-oscillations occuring under definite
conditions in electrolytic systems, The theory
of this phenomenon is presented briefly in this
section and so 1s the mathematical formulation
of the appropriate problem expounded in the
mentioned papers.

The theory of self-oscillations [8] detec-
ted [9] in the reduction of the 8,0,> anions,
proceeds from the fact that the system charac-
teristic p(8) has a decreasing portion and
that the material transport from the solution
to the electrode surface 1s a slow process in
which the drop in concentration from the value
0(2,¢) = ¢* in the bulk of solution to the
value 4(0,t) on the surface occurs in a layer
of finite thickness ! . The current density

{ and the electrode potential ¢ are con-
nected [12] by the relationship ¢ = ¢(0,¢)P(s) (Pig.1). The system loop
consists of two electrodes submerged in an electrolyte and a series resistor
R . A constant voltage v 1is applied to the ends of the loop. The state
of the system in the ¢,0 coordinates is characterized by the intersection
(P1g.1) of the line tr + ¢ = p(r=RS) , where § is the electrode area,and
the curve ¢ = oP(9) . If there is a stationary state o(0,t) = o, in the
system, then the concentration of material is distributed linearly in the

diffusion layer
c(x, 1) = co+ (¢® — co) /1
Under definite conditions the stationary state is unique. If
coP' [0l < —1/r
here, then self-oscillations [11] are excited in the system, and these occur

as follows under the assumption that there 1s no capacitance of the double
electric layer: at the initlal instant let the system be at the point of
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tangency 1 (Pig.l) of the line tr + 8 = v to the curve 1, o, P(8) ; it
then jumps to the point 2 on the same curve and graduatly goes %o the point
of tangency 3 of the line with the curve {.= a-P(B) from which 1t jumps
to the point 4 of the same curve, gradually shifts to the point 1 and
then the cycle is repeated {(o_< ¢o< ¢,) . Here i== nF*Ddc (0, 1)/ 0z, where

D 1s the diffusion coefflcient , nrF* the consumption of electricity per
mole of material.

The mathematical problem reduces to the solution of a nonlinear boundary
value problem for the diffusion equation [11]

ou_ o

5 =D 35 0zl (0.4)

du 1
Dz k=Gl ) =0 (G=nF*D ] 1) 0.2)
u(z, 0) = @ {(z) (0.3)

Here the quantity u{x,t)} 18 related to the concentration »{x,z) as
follows:

u(x, ) =clz, t) —eg— (c°—cguc/l (0.4)
#(x) 18 a certain given function connected with the boundary conditions (in

particular #(1) = 0 ); the S-shaped function F (Fig.2) is described by
the parametric dependence

o | -9
F=2"2 G — o, u:uco+§m (0.5)

The branches r, (u) and r,{(u) correspond
to self-oscillation, where an instantaneocus
Jump from the curve 7 = F, {u) to the curve
F = Fo{u) 1m performed at u = u, and an Y

’ wFr=r 1 (u)

instantaneous Jump from F = Fy(u

at U ™ Ua /:2 :
i
]
]
i
t
t

{0.3) may be reduced, for a given characteris-

The problem described by Equations (0.1) to
tic p(e) to the solution of a nonlinear Vol-

terra integral equation of the second kind h

whose kernel has a weak singularity [11]. “., Mo Uy
However, in prastice it is impossible to deter- i BT ]
mine the polarization curve p(8) by experi- i
mental means. : -

A method of finding this curve (for values Ty 4

of § corresponding to the limit cycle and

enclosing the domain of the maximum of the Fig. 2
characteristic) by solving the inverse probd- .
lem is proposed below., The oscillograms

{ = f,(t? , obtained experimentally, are here assumed to be known.

3. Let us consider the ambiguous function F in condition (0.2} to have
the form (Pig.2)
7 [u ul _ [Fi(w) for 0u/dt>0
Yot | | Fa(u) for 8u/ot< 0
1.1
Fiw<0, F, >0, F/(u)=F (u)=0x
As is known [13], if the times ¢ proceeding from the beginning of the

process are large, the solution of the diffusion equation might be analyzed
without the initial conditions.
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It has been shown in [10Jthat 1f X = !}/ nv/D>2 (where v 1is the
frequency of the process), then the solution of (0.1) might be sought in a
semi-infinite domain.

Let us assume that the functions p, and pF, are known functions of the
time. Then neglecting the initial condition {0.3), let us seek a periodic
solution of the diffusion equation {0.1) in the semi-infinite domain O0< x<=
with 2 condition on the x = O boundary

oul dz =y (t) (1.2)

Here x(t) is a known periodic function of the time with perlod T

[0 for a b AT<ESBAAT
X (t) - Q)(t) for ﬁ+kT§i<T+ kT (k"'o; if, thi) (1.3)
(G:l,’sz, Bz-—-llsz+T, T:Vsz—f-T, 0<p<i)
the functions o{(t) > 0 and ¢{¢) < O periodic with periocd 7.

Let us seek the solution of the formulated problem as & Fourler serles.
Expanding the function y{¢) in series we find

% (D) = —;—"— -+ Z (ak cos 2 1 b, si 2“’“) (1.4)

k=1

2nckt

8
= 2 +[{v 0 csZFa+ o0 cosZHdt]  (k=0,1,2.)

o (1) smg’l’fdt] k=1, 2,..) (1.5)

T ol TG &

by = _%—{§1p ®) smgf—’it dt +

The expressions for the functions au{x,t)/ax and u{x,t) take the form
[14)

= (aa; g <+ }gl exp{ }[ak cos ‘ (—g—’%)% x) -+
-} by sin (-2—’{# —_ (g%)‘/: x)] (1.6)

o=t B () S trenn [ (B4 x
X {(— @ + bu) cos [ — (55)" 2] — (@t by sin [ 22 — (55)" <]} 0.7)

By virtue of the second of conditions (0.2), which should now be satisfied
as x - e , 1t is necessary to put gy= 3,= O 1n (1.6) and (1.7). Hence,
the first of Formulas (1.5) yields for x = O
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8 Y
Ve@a+{g@a=o (1.8)
a B

Let us now elucidate which of the conditions should still be imposed on
the funclons o(t) and y{¢) so that condition (1.1} would be satisfied,
l.e. so that the solution of the desired nonlinear problem would be obtalned.

2. Let us use the Duhamel formula [13]

!
DYy — dr
st = — .
u (2, 1) (=) ”Soox(’t)exp DO V= @.1)
to describe the solution z;(x,t) on each of the two sections g <t < ﬁ
(ul (1’, t)) and ﬁ< t< T (uﬁ (x9 t)) .

Putting x = 0 into {(2.1), we find the value of the function u{(0,¢) on
the boundary

t
u@8=~(Z)" [ (2.2)

Replacing the quantity y(r) 1in the integrand of (2.2} by the function
given by {1.3), and dividing the domain of integration intc separate inter
vals according to {(1.3), where we have put % =0, — 1, — 2,..., let us
represent the functions u,(0,t) (¢ = 1,2) as a sign-alternating series

t
uy (0, 1) = — (%) ’ZS%‘P}:— + 8, () (2.3)

t
w 0,8 == ()" T+ 5,0 24

v B — ’t
Here
D LT a+kT e B-T+kT ole) dx
S () = —(=)" L ALL NS . AULCR (2.5)
' (“) :éo{a-rmr Vi—s a—TSI»kT Vt-'}
8
Sa(t) = — (;‘9)’&-;"7—“3}51— + 8. (2)

-3

Using (1.8) which relates the functions o(¢) and y(z) , we easily see
that the sufficlency criteria for the convergence of the serles S,(t) and
S3(t) 1n (2.3) and (2.4) are satisfied.

On the basis of {2.1), {1.2) and (1.3), the expressions for the functlons
u, (x,¢) and uy(x,t) may be represented as
t

D\ — 3 (t)dr
w(@ ) =—(3) e prig e +Siln ) (26)
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t
D\ —2?  @(r)dr
ug(z, t) = — (?) & OXP 15— Vi + Sa(z, t) (2.7)
B
S ( ) (D)‘/._Ew[ a‘ikr —2z2  @(r)dv +
z, )= — = , exp =
' T B-T+kT DE=1) Vi—x
B-T+kT — ¥ (v) dv ] (2 8)
+ \ P e—m Vix '
a~T+kT
B
D\ —2  Y(r)dr
S )= — (7)o prg Vs tH@  (29)

It is easy to show that the sign-alternating series (2.8) and (2.9) con-
verge.

Let us show that it 1s possible to select the functions §{(t) and o(t)
so that the inequalities

duy (0 t) >0 dug(o l) <0 (210)
would be satisfiled,
Let us assume the inequalities (2.10) satisfied.

Then by virtue of (2.3) to (2.5) the minimum and maximum values of the
function u(0,t) are given by Pormulas (Fig.2)

(1) dv + S (’f)

uo= (@) = i ) = 8,0 = — ()" | T2
B
(u

u, =u, @) =u; @) =S; @) <0 u, >0)

It follows from (0.2), (1.1) and (1.3) that the functions F,(u) and
Fa(u) will be determined by the parametric relationships
FI = Gl\p (t), u=1u, (O, t) Fg = qu) (t), u = Ug (O, t) (2.11)
Hence, we obtaln the following formulas for the derivatives:
aFy — ‘«P Q) dFs = ()
@ = %rny @ =%goy (2.12)
If 4’(t) > 0 and o’(t) < O, as they should be from an analysis of the
oscillograms [8 and 9], Formulas (2.12) then show that in conformity with
Fig.2 dF, .
5 >0 (i=1,2)
Substituting the functions 7, (u) and F,(y) , defined by (2.11), into
(0.5) for intervals of variation @ corresponding to the 1limit cycle (PFig.l),

we obtain dependences P, (8) for 0, 6 ¢ 6, and P,(8) for 6, 6 € 85
Here, as 1s seen from Pig.l, the requirements
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P/ (9)<0,  6,<0<5, (2.13)
Py ()>0, 8,<0<0,, Py(O)=0
Py () <0, 8,<0<8, (2.14)

should be satisfied.

It is easy to see that if the graph of the function p, (u) has no inflec~
tion points, then to satisfy (2.13) 1t is sufficient that
o+ u)FYu)>F @)+ 6 —c) (2.15)
If the graph of the function #,{y) has no more than one inflection point,
then inequalities {2.14) %11l be satisfied if

(e + u,) Fy' (u,) < Fy (w,) + G (° — <) (2.16) .
3. Let us now turn to condition {2.10). Since

¢ t
AL @ar _ v, ¢ W
dt§ Vies = Vi—s +§ Vi—s (3.4)

then (2.3) to {2.5) yleld

t
du; (0, 1) - (__D_)‘/,[ P (a) +S ¥ (v) dv ] + dSy (1) (3 2)
dt n Vi—a J Vi—s dt
t
dus (0, ) D\ @ (B) @' (1) dv dSs ()
u’ds ="(T) [y‘;_.g +§ V'g_g]—l_ ;z (3.3)

s 1 ot emar ST e ae .
()3 | 225+ | 285 69

A )
;=0 B-THkT t—m) a-T+kT

dSs () - 1 0 Y} dv de (i) -
S =7 (%) S o+ (3.5)

Using (1.8), it is easy to see that the sign-alternating series (3.4) and

(3.5) converge for o < t<(f and < t < v » respectively, where the
sum of the series (3.4) 1s positive and of (3 5) is negative. Hence, 1t fol-

lows that the inequalities {2.10) will be.satisfied if the conditions

t
(@) Vv () dv 3
Vies T Vi—s <0 @<t<B) (3.6)
¢
9.8) g’ (v) dr (3.7
AL +§ S>>0 esisy (3.7)

are imposed on the functions y{t) and o(s) .
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Let us examine the inequality (3.6).

For ¢ close to q it is satisfied. Let the
integral in (3.6) be improper. Since ¢/(¢) > O,
it cannot be divergent. Therefore, in the neighbor-
hood of the point ¢ = g the function §(¢) should
be in the simplest case

o lolr g g PO =e+d@— o (3.8)

H/ V (te<g<1, e<0, dL0)

and the condition F/(u,)== (Fig.2) 1s satisfied
by virtue of (3.8) and (2.12).

)

Fig. 3

Analogously, considering lnequality (3.7), we obtain that near the point
t = y the function ¢(t) 13 described in the simplest case by

pt)y=a+b(y—1)p (<5<, a>0,5>0) (3.9)

4, As an example let us consider the functions g(t) and §(t) of the
form

QW =a+bl— 0 +gC—B% bO=c+d@—0T+fE—a) @&1)

Here < 0, > 0 and the remaining constants are bounded by the same
inequalities a3 1n (3.8) and (3.9). Presented in Fig.3 is the form of the
functions y(t) given by (4.1).

If the inegualities
a-+ gV pT >0, e+ fVU—pPT<O (4.2)
then here ¢(t) > O and ’2t3 < 0 ; as is easy to see by
t

ll, the derivatives are ¢ < 0 and §'(¢t)> 0 Condi-
3.7) are satisfied if

are satisfled
consilderi (ﬁ.
tions (3.6) and

d [ —
e~ gl = AT + 5 VT =PT <O (4.3)
b —_
a— 5 () + 5 g VT >0

Finally, (1.8) shows that the constants in (3.1) are related by means of
the equality

b 2 s d
apT + s PT) + 3 0D+ e (1 =T+ 7 [ — p) TI +

2 ;
+3/l—pTI"=0 (4.4)

Formulas (3.2) and (3.3) show that for t close to « and ¢ close to
B , the asymptoylc expansions

duy (0,0 _ D\ b (@) — g (@)
dt —_(ﬂ) Vz_a +--" is

0.0 __(Dy:lo®—v®! (*.3)
dt n V‘t — B o > ey

hold, respectively. Returning to Formulas (2.12) and (4.5), we find
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dF Glf [ 7\

&L ) @ —e @It for u=u
dF, Glg [\ PR

= T) ® —v@I for u=u,

It is clear from (3.2) and (3.3) that for values of t close to g the
derivative du,(o,t) dt 1s finite; for ¢ close to y the derivative
dug(0,t)/a¢t 1s finite. Let us put

u=u, +C(t—B8) (€,>0), u=u_—Cy(t—1) ;>0 (4.6)

Then using (2.12), we rfind in the neighborhood of the value y =y,

dFy  Gldg {u, — u\e-1
du C, k C, )

and in the neighborhood of the value y = y_

ar, Glbs <u — u_\8-1
du = C, Cy )

Given in Fig.4 1s the form of the function u{0,t) obtained as & result
of solving the problem under consideration., It 1s clear that the oescilla-
tions are of the relaxation tyre.

The inequalities (2.15) and (2.16) will be satisfied in this case if the
stronger inequalities

fleot2(5) " Cla + 0 GDU=VTF o+ 1 = V) =
—e+fVU=pT) -V} > @.7)

€ — ¢

>—-2(‘;i>l/2{e+d[(l—p.)T]q+ ] }{—a~gVﬁ+e+d[(1—p)T1“)

—efa 2 (B e —att = pTI (VI=5 — 1+ yTh) +
(e — g ViD) (1= VT= 3 <2(2) [e + o omy +

] ¢ h_c[)

L5 l——][a o@D —e— (VU = p 7] (4.8)

hold, respectively.

Let us note that if we put g = 7 = O in (4.1), thereby reduc these
expressions to (3.9) and (3.8), respectively, then we will have ”c (u.) =
= ri(u,) =0 at the points of the S-shaped function {Pig.2) characterizing
the position of the system after the jumps
and thi does not agree with experiment.

,
5. Let us now assume that near the -

points u =y, and uy = y. the functions F,
and F, have the respective forms

F,=A+BVu, —u,
Fo=C+EVu—u
(A<0, B<O0, €>0, E>0)
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It is easy to see that the theory developed in the preceeding sections 1is
not applicable for this case. Returning to {2.12), we see that if y/(0,8)=0
at ¢t =p and ¢’(p) 1s finite, then the condition r{(u,) = » 1J satisfied;
analogously, for ¢ = y we must have ugJ(O,y) = O and o’(y) 1s finite.

FPor ¢t close to ¢ and t close top Formulas (3.5), respectively, should
hold.

Therefore, we arrive at the following problem: T> seek & periodic func-
tion u(x,t) in the semi~infinite domain O < x < = with the known boundary

value
u(0, 2) = uy(?) (5.1)
Here u, (¢) 1s a function such as is shown in Fig.4 but with zero deriva-
tive at the values
t=a+4+kT—0, t=p+kT—0
The solution of (0.1) with condition (5.1) and without an initial condi-
tion 1s described by the Duhamel formula

(<2}

u(z, 1) = %S uy (¢ — gpg) exp (— &9 dE (5.2)

Differentiating (5.2) with respect to x and putting x = 0 in the
obtained relationship, we find an expression for the function

t
_ 1 uy’ (1) dv
- (nD)s S Vi—= (5.3)

ou l
ox 2==()
Now, as in Section 1, let

t—{"“” a+ kT <1<+ kT
Bl =\ypw, BiT<t<y+IT

Then (5.3), analogously to (2.2) to (2.5), will yield

—00

k=0, 41, +2...) (5.4)

t
) 1 ! (v)d
S| == (uD)l,,S ;,‘:’__.; + @, (2) (5.5)
9 1 v
—6_:% x=20 = (ﬂD)I/‘§ V‘:—Tz_: + m’ (t) (5.6)
in which ;| = a+kT . B—T-+kT ') d
O (t) = ——= 13 wide RAULLS (5.7)
(D)’ kz=o{;3— +&T Vi—r ¢—TS+kT Vi— '}
8
1 ' (v) d
©a(t) = — (nD)'/'S :/(:T)“Tfr +0u(0)

It is seen from (5.5) to (5.7) that a condition analogous to (1.8) is
satisfled automatically so that the sign-alternating series’ (5.5) to (5.7)
converge.

In order for the inverse problem given by (5.5) to (5.7) to describe a
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self~oscillatory process of the considered kind, it is sufficient that the
inequalities

__)‘_}_ dug d o
oz <0, oz xn0> 0, r7 (7}—;

Xe()

x=0> > 0, % (%—Z_g xmo) <0 (58)

and also (4f the assumptions noted in Sectlon 2 hold) the inequalities (2.15)
and (2.16) be satisfied.

In conclusion, I am grateful to A.la.Gokhshtein for a number of valuable
comments .,
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