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Self-oscillatory processes described by nonlinear partial differential equa- 
tions have been considered In [l to 7). 

Below, a periodic solution to the dlffuelon equation with a certain non- 
linear boundary condition Is given. 

A set of papers 18 to 111 has been devoted 
to self-o~clllatlons occurlng under definite 
condltlons in electrolytic systems. The theory 
OS this phenomenon is presented briefly In this 
section' and so Is the mathematical formulation 
of the approprlate problem expounded In the 
mentioned papers. 

The theory OS eels-oeclllatlona 183 detec- 
ted [9] In the reduction of the S,O.* anions, 
proceeds from the fact that the system charac- 
teristic p(e) has a decreasing portion and 
that the material transport from the solution 

_r to the electrode surface Is a alow process in 
which the drop In concentration from the value 
o(z,t) - 0. In the bulk of solution to the 

Pig.1 value e (0,t) on the surface occur8 ln a layer 
OS finite thickness f . The current density 
t and the electrode potential 0 are con- 

nected [12] by the relationship t - e(O,t)p(e) (Pig.1). .The system loop 
consists of two electrodes submerged ln an electrolyte and a series resistor 
R. A constant voltage v Is applied to the end6 of the loop. The state 
of the system In the t,e coordinates Is characterized by the Intersection 
(Rlg.1) of the line tr + e - &dS) 

_ the ourve t - op(e) . 
, where S 18 the electrode area,and 

Ii there is a stationary atate e(O,t) - o,, In the 
ayrtem, then the concentration of material Is distributed linearly In the 
diffusion layer 

c (XV 1) = co + (CO - co) xl1 

Under definite conditions the stationary state Is unique. IS 

@ LB (%)I< --1 / r 

here, then self-oscillations [ll] are excited In the system, and these occur 
ae follows under the assumption that there is no capacitance of the double 
electric layer: at the Mtlal Instant let the ayatem be at the point of 
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tangenoy 1 (Big.l) of the line tr + 8 = u to the curve t+- o P(8) * it 
then jumps to the point 2 on the ssme curve and gradually goes 10 the’point 
of tangency 3 of the line with the curve t-= a-P(6) from which it jumps 
to the point 4 of the same curve, gradually shifts to the point 1 and 
then the cycle is repeated (o--z oO< d+) . Here i = nF*DiYc (0, t) 1 ax, where 
D. la the dlffuslon coefflclent , fl the conrrumption of electrlclty per 
mole of materiril. 

The mathematical problem reduces to the solution of a nonlinear boundary 
value problem Sor the diffusion equation cl11 

au a%a 
-=Dxa at 

au 
i 

1 
dr r~=m-F~ El (I, t) = 0 

@<s<O 

(C = nF*D I 1) 

u (2, 0) = Qp (x) (0.31 

Here the quantity u(r,t) is related to the COn63eMratiOn abz,t) a8 
follows : 

u(aT,t)=C(5C,t)-cCg-(C0-cCg)Z/I (0.4) 
i(x) 18 a oertaln given function connected with the boundary ConditiOni (in 
particular r(z) I 0 ); the S-shaped function F (P&3.2) is deacrlbed by 
the parametric dependence 

V- 

F P 

e = - - G (CO - c(J), 
V---8 

gJ=- - +J + rP (e) 

The branches #‘I (u) and me (u) correspond 
to self-osolllatlon, where an Instantaneous 
jump from the curve F = F, (uf to the Qurve 
F - Fe (u) is perrormed at u - u and an 
InstaIItaIkeoW jupsP from F = Fe u ( f sF-r;(u) 
at u-u,. 

The problem desorlbed by Equations (0.1) to 
(0.3) may be reduoed, for a gfven Charaoteris- 
tic p(e) to the solutlon of a nonlinear Vol- 
terra integral equation of the seaond kind 
whose kernel has a weak slngularlty [ll] . 
However, in praoticre it 2s impossible to deter- 
mine the polarlsation curve P(e) by experi- 
mental means. 

A method of finding th%a curve (for value0 
of 8 crorrespondfng to the limit ayale and 
eneloeing the domain of the mi%imum of the 
characterlstla) by solving the Inverse prob- 

Pig, 2 

tern is 
t - t(t 

reposed below. The oscfllOgramfJ 
7 , obtained experimentally, are here assumed to be known. 

1. Let us consider the pious function F in oondition (0.2) to have 

the form (Fig.2) 

As ia known [13], if the times t proceeding from the beginning of the 
prooess are large, the solution of the diffusion equstfon might be analyzed 
without the initial conditions. 



It has been shown in ElOJthat if h = .@%%)a (where v is the 

frequency of the proce;es), then the solution of (0.1) m.Sght be sought in a 
semi-infinite domain. 

Let us assume that the functions F1 and Fa my known functions of the 

time. Then neglecting the initial condition (0.3), let us seek 8 periodic 

solution of the diffusion equation (0.1) in the se&-infinite domain 0~ CC<= 

with a condition on the x - 0 boutzdary 

f%ftkE=x(t) (i-2) 

Here X(t) 18 a known periodic function of the time with period T 

x @I = { ,“::,’ 
for a+kT<,<<f3+kT 
for p + kT < t <r + kT (k = 0, fC f2,...) (1.3) 

@=‘/apT, P=--‘fapT+T, r=l;iapT+T, O<p<t) 

the funations co(t) a 0 and t(t) < 0 periodic with period T . 

Let us seek the solution of the formulated problem as 8 &mrler series. 

B%pend&& the fumtion x(t) in Series we firmd 

x (t) = T+ fj (~ko0s2~+bksin~) 
k=l 

Here 

n,=~[~\p(t)MS2~dt+~(P(tfCos~dt] (k = 0, i..Z,..) 
0 P 

P 
2 

bk = T 
iS 

* (t) sin (k = 1, 2,...) 
OL P 

The expressions for the functions au(s,t),& and ube,t) take the form 

1143 

FQ viFtue of the second of oondltlons (0.2), which should now be satisfied 

as x--a it is neaeesary to put aO- h= 0 in (1.6) and (1.7). IGmce, 
the first of Formulas (1.5) yields for k - 0 
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which of the conditions should still be Imposed on 

s(t) so that condition (1.1) would be satisfied, 

Let us now elucidate 

the funcions q(t) and 

i.e. so that the solution of the desired nonlinear problem would be obtained. 

2. Let us u8e the Duhamel for?nUla [133 

f 

u (x, t) = - -$” ‘j2 i ) s x tz) exp -z+ ” 
‘-if) 0 - T) 

--ca 
j.&xy 

to describe the solution u (x,1) on each of the two sections @ 

6% (St t>) and b f t < ‘I’ (ua (2, 1)) . 

Putting x = 0 Into (2.1), we find the value of the function 

the boundary t . 

u(O,t)= - -y* (,_s, ‘x(z) d: 
)Tt---7 

WI 

<ttfi 

u(O,t) on 

(2.2) 

Replacing the quantity ~(7) in the integrand of (2.2) by the function 

given by (1.31, and dividing the domain of integration into separate Inter 

vals according to (1.3), where we have put k = 0, - 1, - 2,..., let us 

represent the functions u,(O,t> (5 = 1,2) as a Sign-alteIWtiQ3 series 

t 

u,(O, t) =- 4” FE +27,(t) 
i is GL V-t-T 

242 (0, t) = - $ “I (,s f q(5) dT + s, (t) 
p I/i=-? 

Here 

(2.3) 

(2.4) 

Using (1.8) which relates the functions q(t) 

that the sufficiency oriterla for the convergence 
l?,(t) in (2.3) and (2.4) are vatlsfled. 

and $(t) , we easily see 

of the series S, (2) and 

On the basis of (2.1), (1.2) and (1,3), the expressions for the functions 

u,(x,tf and u,(x,t) may be represented as 
f 

ul(x,t>=- ; % exp**(cP (ri * (T) + 221 fx, t) 
--‘5) U’t-T 

P-6) 
0 



t 

(2.7) 

(2.8) 

It la easy to show that the sign-alternating series (2.8) and (2.9) con- 

verge. 

Let us show that it is possible to select the functions #(t) and g(t) 
so that the InequalitIes 

dulE* t, > OS dua:Y7 I) -c O (2.10) 

would be satisfied. 

Let us assume the 

Then by virtue of 

inequalities (2.10) satisfied. 

(2.3) to (2.5) the mInImum and maximum values of the 

function u(O,t) are given by Formulas (Flg.2) 

u_ = e(a) =h(r)=S,(a)=- 

U+ = 4 0) = Ua (P) = Sa (PI (u-(0, u+>O) 

It follows from (0.2), (1.1) and (1.3) that the functions F,(u) and 

p’*(u) will be determined by the parametric relationshipa 

F, = W P), u = ul(O, t) F2 = GZp (t), u = u2 (0, t) (2.11) 

Hence,we obtain the following formulas for the derivatives: 

‘i”(t) dF1 _ (-J 

ul’) ’ du 
9’ lt) dFa _ Gl 

du u,, 
(2.12) 

If )‘(t) > 0 and (p’(t) < 0, as they should be from an analysis of the . 
oscillograms [8 and 91, Formulas (2.12) then show that In conformity with 

Pig.2 z>o (i=i, 2) 

Substituting the functions F, (u) and F*(u) , 
(0.5) for Intervals of variation 8 corresponding 

we obtain dependence8 P, (e) for elG 8 < II4 and 

Here, as Is seen from Fig.1, the requirements 

defined by (2.11), 

to the limit cycle 

p,(e) for es< e 
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PI’ (f9 < 0, 81 < 0 < 0, 
Pz’ (Q) > 0, 8% f 8 < @*+ P,’ (8,) = 0 

P,’ (@I < 0, Q* < 0 < fl3 
should be satisfied. 

(2.13) 

(2.14) 

It is easy to Bee that if the graph of the function F,(U) has no inflec- 

tion points, then to s8tlsfy (2.13) it Is sufficient that 

(co + K) F,'k) > F, @_) + G @" - c*) (2.15) 

Xi the graph of the funatlon pb(u) has no more than one inflection point, 

then Inequalities (2.14) kill be satisfied if 

(~0 + u+) Fa' @J < Fa @+I + G (co - 4 

3. Let; ua now turn to condition (2.10). 

then (2.3) to (2.5) Held 

where by virtue of (2.5) 

dSi (t) 

+-x--- 

(2.16) , 

(W 

(34 

(3.3) 

(3.4) 

(3.5) 

Using (1.81, it is easy to see that tha sign-alternating series (3.4) and 

(3.5) converge for 01 < t < p and p < t < r , respeotlvely, where the 
sum of the series (3.4) is positive and (;f (3.5) is negative. HerICe, it fol- 

lows that the inequalities (2.10) will be.satisf%ed if the conditions 

8x-e beposed on 

f3.6) 

(3.7) 
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Let us examlne the InequalIty (3.6). 

/lJbJ- 
For .& close to a It Is satisfied. Let the 

x Integral ln (3.6) be Improper. Since *.‘(t) > 0 , 

it cannot be divergent. Therefore, In the nelghbor- 

hood of the point t - p the function ) (t ) should 

be In the simplest case 

(r 7 +r t II (0 = e + d @I - t)* (3.8) 

P/Z < q < 1. e < 0, d < 0) 

Fig. 3 
and the condition F,‘(u+)-m (Fig.2) is satisfied 

by virtue of (3.8) and (2.12). 

Analogously, considering Inequality (3.7), we obtain that near the point 

t-Y the function cp(t) Is described ln the simplest case by 

cp 0) = a + b (7 - 0 (‘/z<s<l, a>% b>O) (3.9) 

4. As an example let us consider the functions q(t) and ,(t) of the 
form 

cp (0 = Q + b (r - t)” + g (t - PY”, 9 (t) = e + d (p - f)* -b f (t - Q)I” (4.1) 

Here 
lnequallt!e~ ik &1>(;.8) and (3.9). 

and the remaining constants are bounded by the same 

functions X(t) given by (4.1). 
Presented In Fig.3 Is the form of the 

If the inequalities 

a+gVs>O, e+fV(l-P)T<O (4.2) 

are satisfied then here cg(t) > 0 and ) t < 0 ; as Is easy to see by 
consider17 (4.11, the derivatives are cp [t] < 0 and *‘(t) > 0 Condl- 
tlons (3.6 and 3.7) are satisfied if 

e 

Finally, (1.8) 
the equality 

- 2A I(1 - P) Tl* -I- + f I’-(1 - P) T <0 (4.3) 

a-L(pT)s+~g~p?T>O 2s - 1 

shows that the constants In (3.1) are related by means of 

apT + & WY’ -I- f g (pTf" + e (1 - P) T -I- & [(1 - p) TlqtL + 

+ + f I(1 - p) T]“” = 0 (4.4) 
Formulas (3.2) and (3.3) show that for t close to a and t close to 

B , the asymptoylc expansions 

d% (0, t) 
dt 

du, (0, t) 
dt 

I*(a) -cpWl + 
jft-a 

IV (P) -Ip( + 

V=B 

hold, respectively. Returning to Formulas (2.12) and (4.51, we find 
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dF,_ -9 (;)I’* [$ (a) -‘p (a)]-’ clu-- L 
for u = u_ 

dF, -=-- 
dU 

"2'" (g)'" [g, (p) -q @)I-' for u = u+ 

It 1s Clear from ( .2) and (3.3) that for values of t close to e the 
derivative au, (0,t) at Is finite; / 
du,(O,t)/dt 1s finite. Let us put 

for t close to y the derivative 

u = u+ + C, 0 - P) (C, > 01, u = u_ - c, 0 - -r) (C, > 0) (4.6) 

Then using (2.12), we find in the neighborhood of the value u = u+ 

dF1 - u 
- -z 
Cl0 

22 [U+cl 

) 

Q-l 

and ln the neighborhood of the value u = u_ 

cEF, - = E$ (E+S)s-l 
flu 

Given In Rig.4 Is the form of the function u(O,t) obtained as a result 
of solving the problem under consideration. It Is clear that the OsCllla- 
tlons are of the relaxation type. 

The lnequalltles (2.15) and (2.16) will be satisfied ln this case if the 
stronger lnequalitles 

f[c* + 2 ($)‘” {Ia + b (Jm(- 1/l + p + 1 - v’j) - 

-(e i f V/(1 - P) T) (1 - VP))1 > (4.7) 

e + d [(I - p) Tjq +T I- a - g $9 i- e + d [(I - p) Tlq) . 
> 

_&+” _i_ E(F)‘,‘? I(- e - d ((1 - P)W) (V2T - i + v/2Tp) + 

-L (- 0 - 8 VP) (1 - l/G&J<2 ($)‘“[a + b (pT)S + 

-1. 5-F-j (0 -/- b (pT)S _ e _ f f/(1 - P) Tl (4.6) 

hold, respectively. 

Let us note that If we put 4 = 1 = 0 ln (4.1), thereby reducing these 
expressions to (3.9) and (3.81, respeotlvely, then we will have 
= ~;(u,)=O at the points of the S-shaped function (Pig.21 

F 
\ 

(u-) - 
charac erizing 

the position of the system after the jumps 
and thi does not agree with experiment. 

5. Let us now assume that near the 

points IA = U+ and u = U_ the functions F, 

and F, have the respective forms 

F, = A+Bh+-uu, 
L- 

F,=C+EVu-u_ 

(A<& B<O, C>O, E>O) 



It is easy to see that the theory developed In the preeew eeatioM ie 
not applicable for this case. Return.lng to (2.121, we Bee that if u;(O,B)= 0 
at t - b and ) * (p ) Is flnlte, then the Condition Fl (IS+ ) = - 18 eatiefled; 
analogoufJly, for t I y we must have u:(O,y) - 0 and q’(y) is finite. 
For t close to Q end t close to p Formulas (4.5), respectively, should 

hold. 

merefore, we arrive at the following problem: Ta seek a periodic iunc- 
tlon u(x,t ) In the semlilnflnite domain 0 < x < - with the known boundary 
value 

40, 0 = uow (5.0 

Here u,(t) la a function such as Is shown In Fig.4 but with zero derlva- 
tlve at the values 

t =a+kT-0, t=fi+kT-0 

The solution of (0.1) with condition (5.1) and without an inltlal condl- 
tlon is described by the Duhamel formula 

u (z, 1) = $hl (t -&) exP(- E”)G 
0 

Mfferentiatlng (5.2) with reepeot to x and putting x - 0 In the 
obtained relatlonehlp, we find an expreeslon for the function 

t 
al4 I i 
xX=@=-- s 4’ (5) dr 

(dp _ v t--r 
Now, a8 In Section 1, let 

u”(t) = {if;, 
a+kT<t<P++T 
P+kTjt(r+kT 

(k=O, &t, f2. . . .I 

Then (5.31, analogously to (2.2) to (2.5), will yield 

In which 

(5.2) 

(5.3) 

(5.4) 

(5.5) 

(5.6) 

(5.7) 

P 

0% (t) = - -L- \ v’(t-) + o1 (1) 
(nD)y Jft -T 

It IS seen from (5.5) to (5.7) that a condition analogoue to (1.8) IS 
aaticrfled automatically 60 that the sign-alternating serlelr (5.5) to (5.7) 
uonverge . 

In order for the inverse problem given by (5.5) to (5.7) to describe a 
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self-oscillatory process of the considered kind, it Is sufficient that the 
inequalities 

and also (if the a88umptlons noted in Section 2 hold) the inequalities (2.15) 
and (2.16) be satisfied. 

fn conclusion, X am grateful to A.Ia.Qokhshteln for a number of valuable 

conmlenta. 
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